国产成人a v一区二区三-精品免费久久久久久久中文-亚洲av高清免费在线播放-一区,二区,三区在线播放

陳義旺團隊利用聚合物調節策略解決薄膜沉積不均難題

發表時間:2024/8/15 17:55:09

1.png

鈣鈦礦太陽能電池(PSCs)因其輕質、可溶液印刷和低成本等優勢而受到廣泛關注。實驗室規模的PSCs的光電性能得到了顯著提升,這使得研究范圍擴展到了商業化潛力的熱門探索領域。實現鈣鈦礦太陽能模組的全印刷製備對於規?;窂蕉砸呀浧仍诿冀?。然而,有機傳輸層的印刷工藝和成膜特性,尤其是Spiro-OMeTAD,一直被忽視。由於墨水流變學與印刷過程不匹配以及LiTFSI-tBP添加劑的不穩定性,印刷的Spiro-OMeTAD面臨著非均勻性和孔洞問題。

南昌大學陳義旺團隊于2024Energy & Environmental Science八月號(15)發表研究,專注于解決Spiro-OMeTAD作為傳輸層材料的印刷過程和薄膜形成性質問題。Spiro-OMeTAD在印刷過程中容易出現不均勻性和孔洞問題,由于墨水流變學參數與印刷過程不匹配,以及LiTFSI-tBP添加劑的不穩定性。
為了克服這些挑戰,研究團隊提出了一種聚合物調節策略,通過添加poly(4-vinylpyridine)P4VP)來增加內部摩擦,抑制不必要的液膜流動(主要是徑向流和馬朗戈尼流),從而實現大面積Spiro-OMeTAD薄膜的均勻沉積。此外,P4VP的吡啶基團能夠固定LiTFSI,防止孔洞形成,并提高有機薄膜的印刷質量。

實驗結果顯示,使用這種策略的鈣鈦礦太陽能電池PSCs在不同面積下(0.04 cm2、25 cm2100 cm2)的光電轉換效率(PCE)分別達到24.1%18.01%16.03%,且其穩定性與不含添加劑的旋涂方法相當。這種方法為大面積沉積非晶態小分子半導體提供了深入見解。

導讀目錄

1.          研究背景與改善工程手法

2.          表征設備的運用與優化工程論證

3.          聚合物P4VP有效提升Spiro-OMeTAD的成果


研究背景與改善工程手法

研究團隊于研究過程中發現并歸納出幾項材料上的缺陷:

1.  Spiro-OMeTAD薄膜的不均勻性:研究發現,Spiro-OMeTAD在印刷過程中容易出現不均勻的薄膜,這是由于墨水流變學參數與印刷過程不匹配。

2.  Spiro-OMeTAD的穩定性問題:在印刷過程中,tBP的蒸發會惡化Spiro-OMeTAD的穩定性。

3.  孔洞形成:由于LiTFSI-tBP添加劑的不穩定性,Spiro-OMeTAD薄膜中容易形成孔洞,影響裝置的效能和穩定性。

然而,缺陷的改善與優化恰好成為本論文研究的最大亮點。透過以下研究手法的進程,可以探知研究團隊如何運用poly(4-vinylpyridine)P4VP)進行Spiro-OMeTAD均勻印刷的程序和手法如下:

1.         材料制備:準備Spiro-OMeTAD溶液,其中包含Spiro-OMeTAD、不同比例的P4VP4-tert-butylpyridine (tBP)、Li-TFSI acetonitrile溶液和氯仿。

2.       基板清潔ITO-coated玻璃基板在進行印刷前,先在超聲波浴中清潔,然后用氮氣流干燥并進行空氣等離子體處理。

3.       印刷過程:使用meniscus printing技術進行印刷。對于SnO2電子傳輸層,設定刮刀速度為5 mm/s,刮刀與基板的距離為50 µm,基板加熱溫度為50°C。對于Spiro-OMeTAD層,印刷過程中刮刀速度為5 mm/s,刮刀與基板的距離為100 µm。

4.      預處理和后處理:在印刷Spiro-OMeTAD之前,對基板進行真空預處理,然后對涂有Spiro-OMeTAD的基板進行熱處理。

5.      電極沉積:在Spiro-OMeTAD層干燥后,刮去公共電極,并在高度真空中蒸發沉積Ag接觸電極,厚度為100 nm。

6.      裝置組裝:將印刷好的Spiro-OMeTAD層與其他層如SnO2電子傳輸層、鈣鈦礦吸收層等組裝成完整的太陽能電池裝置。

7.       印刷質量控制:通過光學顯微鏡、AFM、SEM等技術來檢查印刷質量,確保Spiro-OMeTAD層的均勻性和完整性。

8.      性能評估:使用J-V測量、IPCE、EIS等技術來評估太陽能電池的性能,并進行熱穩定性和濕度穩定性測試。
2.png 3.png


表征設備的運用與優化工程論證

研究團隊采用了以下表征量測設備:

1.     掃描電子顯微鏡(SEM:用于觀察和分析印刷后Spiro-OMeTAD層的橫截面形態,評估薄膜的均勻性和質量。

2.   原子力顯微鏡(AFM:用于分析印刷薄膜的表面形貌和粗糙度,進一步評估印刷質量。

3.   光學顯微鏡:用于觀察薄膜表面的微觀特征,如孔洞和不均勻性。

4.  光致發光(PL)光譜:用于評估載流子提取效率和缺陷狀態,從而分析印刷薄膜的光電性能。

5.  電化學阻抗譜(EIS:用于分析裝置的界面特性和電荷轉移過程。

6.  時間分辨光致發光(TRPL:用于測量載流子壽命,反映缺陷狀態對載流子復合的影響。

7.   熱重分析(TGA:用于分析材料的熱穩定性和組分變化。

8.  Kelvin探針力顯微鏡(KPFM:用于測量薄膜的工作函數和表面電位,評估半導體性能的穩定性。

9.  時間飛行二次離子質譜(TOF-SIMS:用于分析離子遷移和材料分布。

10.    太陽光器及IV測量系統: 用于模擬標準的太陽光照條件,以便在受控環境下測量太陽能電池的性能; 測量太陽能電池的電流-電壓(IV)特性,從而計算出PCE。

團隊使用了光焱科技的SS-X系列太陽光模擬器進行在仿真環境中,通過全譜照明、操作溫度等來提供準確的PCE數據,幫助研究團隊評估印刷技術對太陽能電池效率的影響,以及大面積沉積的均勻性。


4.png 4. 全功能層印刷PSCs的光伏性能。

(a) J-V曲線和 (b) EQE曲線的小面積PSCs。

(c) 摻雜或不摻雜PAVP的空穴主導設備的空間電荷限制電流(SCLC)特性。(d) 電化學阻抗譜(EIS)。(e) 瞬態光電壓曲線。(f) 莫特-肖特基曲線。(g) FFLP設備隨著活性面積增加的標準化PCE演變。(h) 帶有Au電極的25 cm2 PSMsJ-V曲線。

1. 基于正向和反向掃描的特定光電參數。


5.png


光焱科技太陽光模擬現場示意圖
6.png

7.png


聚合物P4VP有效提升Spiro-OMeTAD的成果

研究團隊成功將Spiro-OMeTAD具有良好兼容性的高分子量聚合物引入到HTL中。通過聚合物與Spiro-OMeTAD之間的分子相互作用,提高了Spiro-OMeTAD墨水的內部摩擦,并抑制了印刷過程中的各種復雜流動,從而在溶劑蒸發過程中實現了更均勻的薄膜鋪展和沉積。以下綜合了此研究所帶來顯著的成效:

1.     印刷均勻性改善:通過添加聚合物P4VP,抑制了Spiro-OMeTAD印刷過程中的不均勻液膜流動,實現了大面積均勻沉積。

2.   光電轉換效率提升:印刷的Spiro-OMeTAD層在不同面積下(0.04 cm2、25 cm2100 cm2)的光電轉換效率(PCE)分別達到24.1%18.01%16.03%。

3.   裝置穩定性提高:添加P4VPSpiro-OMeTAD薄膜在空氣和熱老化測試中顯示出良好的穩定性,能夠維持超過80%的原始效率。

4.  印刷技術商業化潛力:該研究為全印刷制程的鈣鈦礦太陽能電池提供了深入見解和經驗,有助于促進商業化生產。

5.  科學理解進展:研究提供了對非晶態小分子半導體沉積過程的精密理解,特別是在印刷技術方面的知識進展。



推薦產品

  SS-X系列

塵護盾.png


文獻參考自EES .2024_ DOI: 10.1039/D4EE01230E

本文章為Enlitech光焱科技改寫 用于科研學術分享 如有任何侵權  請來信告知



版權所有©2024 光焱科技股份有限公司 All Rights Reserved    備案號:滬ICP備2021022654號-3    sitemap.xml    管理登陸    技術支持:化工儀器網